• 1
  • 2
  • 3
  • 4
  • 5
百家谈云计算 首 页  »  帮助中心  »  云服务器  »  百家谈云计算
阻止大数据大量商业价值被浪费
发布日期:2016-3-5 22:3:32

  Ayasdi的联合创始人兼CEO Gurjeet Singht认为:从查询开始分析数据本身就是一个死胡同,并指出了当下的大数据只完成了万里长征的第一步。我们都知道使用大数据非常的有前途,然而基于当下的许多因素,数据的有效利用仍然是个瓶颈。药物研发过程中,数据的使用多于化学过程;新能源的探测中,数据的使用超过地质学;恐怖分子的追踪、预防欺骗中同样如此。现在我们已经认识到的上述的这些问题和其它一些全局性问题,都是数据使用的瓶颈所造成的。这种情况催生了大数据上的海量投资,而数据工作同样成为了最热门的岗位 —— 数据科学家,更把私人数据分析服务提供商(如阿里云)的估值推到数十亿美元。然而,你能想象到将分析的数据从1%提升到100%的前景吗。

  大数据只是起步,并不是终点

  经常会听到我们在癌症研究、能源勘探、药物发现、金融欺诈检测等领域取得了关键性突破,若因为炒作出来的“大数据泡沫”导致人们因为各种原因在数据分析投资上的失败,这与犯罪又有何不同?所以我们需给予数据分析更高的期望,我们更需认识到下一代解决方案必须满足:

  授权领域专家:数据科学家出现的频率已完全跟不上企业的需求。这里不妨这么做,停止继续为他们(数据科学家)开发工具;取而代之的是,给商业用户(生物学家、地质学家、安全分析师等)开发对应的工具。他们比任何人都明白问题出现的环境,但可能跟不上最新的技术或数学。加速探索:我们需要更快的获得关键见解。事实证明大数据技术的处理速度并没有承诺的那么快。若一直这样发展下去,可能我们永远都得不到足够快的关键见解获得速度,因为我们永远都不可能针对所有数据提出所有的问题。

  人机整合:为了更快的获得见解,我们需要加大对机器智能的投资。我们需要机器能在数据点之间寻求连接和关系时担当更多的重任,让其给商业用户一个更好的起点去探索见解。事实上通过算法途径解决这些问题是完全可行的,并且人们本身永远都不可能发现大型数据集上的显著特征。例如在最近的一项研究中,通过算法查询网络搜索引擎日志发现了之前未报告过的药物副作用。分析各种形式的数据:当然,研究人员需要分析结构化和非结构化的数据。同样我们需要认识非结构化数据的多样性:所有语言、声音、视频和面部识别文档。

  当谈到大数据演变,我们只处于其初级阶段。显而易见如果我们继续分析百分之一的数据,那么我们只能挖掘其1%的价值。如果我们能够分析其它的99%,那么想象一下我们可以从各种方面推动世界进步。

  对已有数据分析的见解

  若你拥有一个和人类基因一样庞大的数据集,你该怎样开始?比如,奥巴马最近提倡对人类大脑进行绘制?为了突破,我们需解决这个世界上最复杂的问题,我们需根本上改变从数据中获取知识的途径。这里我们必须首先思考的是:从查询开始必然是一个死胡同:查询本身并没有问题。事实上一旦你知道问什么问题,查询是至关重要的。同样这也是关键所在:从查询开始的初衷是从大量的数据中发现一个指针,然而他们并未做到。

  数据是有开销的:大部分情况下,数据的储存已不再昂贵。而且通过使用类似Hadoop或Redshift的工具,即使查询大量的数据都变得非常划算。当然,这只是从硬件的角度上讲。见解就是金钱:我们愿意承担花销唯一理由就是数据中的见解可以释放价值。遗憾的是,我们失去了已收集数据中大部分的价值。虽然收集数据的成本可能会很高,但无效分析带来的成本显然更高。当下并不存在什么工具可直接从数据中提取见解,我们依赖着很聪明的人去提出假设,然后使用我们的工具去证实(或是否定)这些臆测。因为依赖的是臆测,这个途径存在着天生的缺陷。

  你已拥有了足够多的数据:这里经常存在的信念就是 —— “若我们拥有了足够多的数据,我们肯定会得到我们想要的。”太多的时间和精力被浪费在新的数据收集上,其实你可用你手中的数据做更多的事情。举个例子,Ayasdi最近在Nature Scientific Reports公布的从12岁乳腺癌患者身上获得的新见解,就已被深入分析了10多年之久。